Exploiting Identifiability and Intergene Correlation for Improved Detection of Differential Expression

Author:

Deller J. R.1,Radha Hayder1,McCormick J. Justin2

Affiliation:

1. Department of Electrical and Computer Engineering, Michigan State University, 2120 EB, East Lansing, MI 48824, USA

2. Department of Molecular Biology & Biochemistry, Carcinogenesis Laboratory, Michigan State University, 341 FST, East Lansing, MI 48824, USA

Abstract

Accurate differential analysis of microarray data strongly depends on effective treatment of intergene correlation. Such dependence is ordinarily accounted for in terms of its effect on significance cutoffs. In this paper, it is shown that correlation can, in fact, be exploited to share information across tests and reorder expression differentials for increased statistical power, regardless of the threshold. Significantly improved differential analysis is the result of two simple measures: (i) adjusting test statistics to exploit information from identifiable genes (the large subset of genes represented on a microarray that can be classified a priori as nondifferential with very high confidence], but (ii) doing so in a way that accounts for linear dependencies among identifiable and nonidentifiable genes. A method is developed that builds upon the widely used two-sample t-statistic approach and uses analysis in Hilbert space to decompose the nonidentified gene vector into two components that are correlated and uncorrelated with the identified set. In the application to data derived from a widely studied prostate cancer database, the proposed method outperforms some of the most highly regarded approaches published to date. Algorithms in MATLAB and in R are available for public download.

Funder

Michigan State University

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3