The Polysaccharides from the Aerial Parts of Bupleurum chinense DC Attenuate Epilepsy-Like Behavior through Oxidative Stress Signaling Pathways

Author:

Li Xiaomao1ORCID,Liu Yan1ORCID,Wang Siyi1,Jiang Yikai1,Algradi Adnan Mohammed1,Zhou Yuanyuan1,Guan Wei1,Pan Juan1,Kuang Haixue1ORCID,Yang Bingyou1ORCID

Affiliation:

1. Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China

Abstract

Bupleurum chinense DC. is a traditional Chinese medicine with a long medicinal history and is often used as the main ingredient in prescription drugs for epilepsy. The aerial parts of B. chinense DC. have similar efficacy and composition to B. chinense DC. Therefore, we speculated that the aerial parts of B. chinense DC. could be used in the treatment of epilepsy. Polysaccharides from the aerial parts of B. chinense DC. were selected to explore their therapeutic effects on epilepsy and their potential mechanism of action. The study is aimed at clarifying the antiepileptic effects of the polysaccharides from the aerial parts of B. chinense DC. and their potential underlying mechanisms. The chemical profile of the aerial parts of B. chinense DC. polysaccharides (ABP) was characterized by FT-IR spectrum and HPLC chromatogram. To determine the therapeutic effects of ABPs on epilepsy, we established a kainic acid- (KA-) induced rat model of epilepsy, and through H&E staining, Nissl staining, immunohistochemistry, biochemical analysis, ELISA, and Western blot analysis, we explored the mechanisms underlying the therapeutic effects of ABPs on epilepsy. The monosaccharide content of ABP included galacturonic acid (45.19%), galactose (36.63%), arabinose rhamnose (12.13%), and mannose (6.05%). Moreover, the average molecular weight of ABP was 1.38 × 10 3 kDa . ABP could improve hippocampal injuries and neuronal function in the KA-induced epilepsy rat model. ABP significantly inhibited oxidative stress in the hippocampus of KA-induced rats. More importantly, ABP could regulate TREM2 activation in the PI3K/Akt/GSK-3β pathway to inhibit neuronal apoptosis, including increasing the expression of superoxide dismutase and lactate dehydrogenase and decreasing the expression of malondialdehyde. The current study defined the potential role of ABP in inhibiting the development of epilepsy, indicating that ABP could upregulate TREM2 to alleviate neuronal apoptosis, by activating the PI3K/Akt/GSK-3β pathway and oxidative stress in epilepsy.

Funder

Heilongjiang Touyan Innovation Team Program

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3