A State-Dependent Impulsive Nonlinear System with Ratio-Dependent Action Threshold for Investigating the Pest-Natural Enemy Model

Author:

Ullah Khan Ihsan1,Ullah Saif23,Bonyah Ebenezer4ORCID,Al Alwan Basem5,Alshehri Ahmed6

Affiliation:

1. Department of Mathematics, Institute of Numerical Sciences, Gomal University, Dera Ismail Khan 29050, KPK, Pakistan

2. Department of Mathematics, University of Peshawar, Peshawar, Pakistan

3. Department of Mathematics, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia

4. Department of Mathematics Education, Akenten Appiah Menka University of Skills Training and Entrepreneurial Development, Kumasi, Ghana

5. Chemical Engineering Department, College of Engineering, King Khalid University, Abha 61411, Saudi Arabia

6. Department of Mathematics, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Abstract

Based on the Lotka–Volterra system, a pest-natural enemy model with nonlinear feedback control as well as nonlinear action threshold is introduced. The model characterizes the implementation of comprehensive prevention and control measures when the pest density reaches the nonlinear action threshold level depending on the pest density and its change rate. The mortality rate of the pest is a saturation function that strictly depends on their density while the release of natural enemies is also a nonlinear pulse term depending on the density of real-time natural enemies. The exact impulsive and phase sets are given. The definition and properties of the Poincaré map corresponding to the pulse points on the phase set are provided. We investigate the existence and stability of boundary and interior order-1 periodic solution. The theoretical analysis developed in the present paper combined with nonlinear controlling measures as well as nonlinear action threshold methods and techniques laid the foundation for the establishment and analysis of other state-dependent feedback control models.

Funder

King Khalid University

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3