Development and Evaluation of a Novel Polymer Drug Delivery System Using Cromolyn-Polyamides-Disulfide using Response Surface Design

Author:

Alkurdi Nadeen Mohammad1,Hussein-Al-Ali Samer Hasan12ORCID,Albalwi Awad3,Haddad Mike Kh.4,Aldalahmed Yousef1,Ali Dalia Khalil15

Affiliation:

1. Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Isra University, Amman 11622, Jordan

2. Department of Chemistry, Faculty of Science, Isra University, Amman 11622, Jordan

3. Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia

4. Department of Renewable Energy Engineering, Faculty of Engineering, Isra University, P.O. Box 22, Amman 11622, Jordan

5. Department of Physiotherapy, Faculty of Allied Medical Sciences, Isra University, Amman 11622, Jordan

Abstract

The aim of this study was to employ nanoparticles as drug carriers. The research involved the design of cromolyn polyamide-disulfide nanocomposites to overcome the problem of frequent cromolyn doses and improve their properties. The cromolyn polyamide-disulfide samples were prepared using several amounts of cromolyn and sodium polyamide-disulfide polymer at different pH values. Analysis of variance (ANOVA) was performed to obtain the significant independent variables affecting the dependent response by using a P value lower than 0.05. The nanocomposites produced were characterized using Fourier transform infrared (FTIR) spectroscopy and in vitro release. An FTIR test was used to evaluate the functional groups of cromolyn in nanocomposites, which indicated that the drug was encapsulated inside the polymer. All data indicated the presence of cromolyn in the nanocomposites. The release profile of nanocomposites was found to be sustained. Therefore, the outcome of this research project could be a starting point for further work to optimize and assess polyamide-disulfide polymers for delivering another drug.

Funder

Isra University

Publisher

Hindawi Limited

Subject

General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3