Efficient Signature Based Malware Detection on Mobile Devices

Author:

Venugopal Deepak1,Hu Guoning2

Affiliation:

1. Nokia Inc, 6000 Connection Dr, Irving, TX 75039, USA

2. Truveo Inc, An AOL Company, 333 Bush Street, San Francisco, CA 94104, USA

Abstract

The threat of malware on mobile devices is gaining attention recently. It is important to provide security solutions to these devices before these threats cause widespread damage. However, mobile devices have severe resource constraints in terms of memory and power. Hence, even though there are well developed techniques for malware detection on the PC domain, it requires considerable effort to adapt these techniques for mobile devices. In this paper, we outline the considerations for malware detection on mobile devices and propose a signature based malware detection method. Specifically, we detail a signature matching algorithm that is well suited for use in mobile device scanning due to its low memory requirements. Additionally, the matching algorithm is shown to have high scanning speed which makes it unobtrusive to users. Our evaluation and comparison study with the well known Clam-AV scanner shows that our solution consumes less than 50% of the memory used by Clam-AV while maintaining a fast scanning rate.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. API2Vec++: Boosting API Sequence Representation for Malware Detection and Classification;IEEE Transactions on Software Engineering;2024-08

2. A Survey on Malware Detection and Analysis;Journal of Science & Technology;2024-07-10

3. Malware Detection Using Contrastive Learning Based on Multi-Feature Fusion;2023 IEEE 22nd International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom);2023-11-01

4. Breaking the structure of MaMaDroid;Expert Systems with Applications;2023-10

5. A Novel Deep Learning-Based Malware Detection Scheme Considering Packers and Encryption;2023 2nd International Conference on Edge Computing and Applications (ICECAA);2023-07-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3