Comprehensive Analysis of LINC01615 in Head and Neck Squamous Cell Carcinoma: A Hub Biomarker Identified by Machine Learning and Experimental Validation

Author:

Yin Xiaoyan1ORCID,Wang Jingmiao1ORCID,Bian Yanrui1ORCID,Jia Qiaojing1ORCID,Shen Ziyi1ORCID,Zhang Haizhong1ORCID

Affiliation:

1. Department of Otolaryngology, Head and Neck Surgery, The Second Hospital Of Hebei Medical University, Shijiazhuang, China

Abstract

Background. Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers, but in clinical practice, the lack of precise biomarkers often results in an advanced diagnosis. Hence, it is crucial to explore novel biomarkers to improve the clinical outcome of HNSCC patients. Methods. We downloaded RNA-seq data consisting of 502 HNSCC tissues and 44 normal tissues from the TCGA database, and lncRNA genomic sequence information was downloaded from the GENECODE database for annotating lncRNA expression profiles. We used Cox regression analysis to screen prognostic lncRNAs, the threshold as HR >1 and p value <0.05. Subsequently, three survival outcomes (overall survival, progress-free interval, and disease-specific survival)-related lncRNAs overlapped to get the common lncRNAs. The hub biomarker was identified using LASSO and random forest models. Subsequently, we used a variety of statistical methods to validate the prognostic ability of the hub marker. In addition, Spearman correlation analysis between the hub marker expression and genomic heterogeneity was conducted, such as instability (MSI), homologous recombination deficiency (HRD), and tumor mutational burden (TMB). Finally, we used enrichment analysis, ssGSEA, and ESTIMATE algorithms to explore the changes in the underlying immune-related pathway and function. Finally, the MTT assay and transwell assay were performed to determine the effect of LINC01615 silencing on tumor cell proliferation, invasion, and migration. Results. Cox regression analysis revealed 133 lncRNAs with multiple prognostic significance. The machine learning algorithm screened out the hub lncRNA with the highest importance in the RF model: LINC01615. Clinical correlation analysis revealed that the LINC01615 increased with increasing the T stage, N stage, pathology grade, and clinical stage. LINC01615 could be used as a predictor of HNSCC prognosis validating by a variety of statistical methods. Subsequently, when clinical indicators were combined with the LINC01615 expression, the visualization model (nomogram) was more applicable to clinical practice. Finally, immune algorithms indicated that LINC01615 may be involved in the regulation of lymphocyte recruitment and immunological infiltration in HNSCC, and the LINC01615 expression represented genomic heterogeneity in pan-cancer. Functionally, silencing of LINC01615 suppresses cell proliferation, invasion, and migration in HEP-2 and TU212 cells. Conclusion. LINC01615 may play an important role in the prostromal cell enrichment and immunosuppressive state and serve as a prognostic biomarker in HNSCC.

Funder

S&T Program of Hebei

Publisher

Hindawi Limited

Subject

Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3