A Deep Learning Filter that Blocks Phishing Campaigns Using Intelligent English Text Recognition Methods

Author:

Tang Yonghui1,Wu Fei2ORCID

Affiliation:

1. Shaoyang University, Shaoyang 422000, China

2. Hunan Institute of Engineering, Xiangtan 411101, China

Abstract

Most of the sophisticated attacks in the modern age of cybercrime are based, among other things, on specialized phishing campaigns. A challenge in identifying phishing campaigns is defining a classification of patterns that can be generalized and used in different areas and campaigns of a different nature. Although efforts have been made to establish a general labeling scheme in their classification, there is still limited data labeled in such a format. The usual approaches are based on feature engineering to correctly identify phishing campaigns, exporting lexical, syntactic, and semantic features, e.g., previous phrases. In this context, the most recent approaches have taken advantage of modern neural network architectures to record hidden information at the phrase and text levels, e.g., Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNNs). However, these models lose semantic information related to the specific problem, resulting in a variation in their performance, depending on the different data sets and the corresponding standards used for labeling. In this paper, we propose to extend word embeddings with word vectors that indicate the semantic similarity of each word with each phishing campaigns template tag. These embedded keywords are calculated based on semantic subfields corresponding to each phishing campaign tag, constructed based on the automatic extraction of keywords representing these tags. Combining general word integrations with vectors is calculated based on word similarity using a set of sequential Kalman filters, which can then power any neural architecture such as LSTM or CNN to predict each phishing campaign. Our experiments use a data indicator to evaluate our approach and achieve remarkable results that reinforce the state-of-the-art.

Funder

Education Department of Hunan Province

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Bioengineering,Medicine (miscellaneous),Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3