Exploring the Ferroptosis Mechanism of Zhilong Huoxue Tongyu Capsule for the Treatment of Intracerebral Hemorrhage Based on Network Pharmacology and In Vivo Validation

Author:

Wang Lixia1ORCID,Ren Wei23ORCID,Wang Li2ORCID,Mao Linshen23,Mazhar Maryam3ORCID,Zhou Chen2ORCID,Xu Houping4ORCID,Yang Sijin23ORCID

Affiliation:

1. Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, China

2. National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182 Chunhui Road, Longmatan District, Luzhou 646000, China

3. Institute of Integrated Chinese andWestern Medicine of Southwest Medical University, Luzhou 646000, China

4. Preventive Treatment Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China

Abstract

Objective. The purpose of this study is to explore the mechanism of the Zhilong Huoxue Tongyu (ZL) capsule in the treatment of intracerebral hemorrhage (ICH) via targeting ferroptosis based on network pharmacology. Methods. The active ingredients and related key targets of the ZL capsule were screened using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). The gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were also performed. Finally, identified targets were validated in an in-vivo model of ICH. Results. A total of 30 active ingredients and 33 intersecting targets were identified through a TCMSP database search. Ingredients-Targets-Pathways network was constructed to filter out the key targets according to the degree value. TP53 was selected as the key target. The in-vivo validation studies demonstrated that TP53 was down-regulated and GPX4 was upregulated in rats following ZL capsule treatment. Conclusions. It is concluded that the ZL capsule could alleviate ICH in a muti-target and multi-pathway manner. ZL capsule could alleviate ICH by inhibiting ferroptosis, and TP53 is identified to be the potential target. Further research is needed to clarify the detailed anti-ferroptotic mechanism of the ZL capsule.

Funder

Sichuan Provincial Administration of Traditional Chinese Medicine

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3