A Study of Feature Construction Based on Least Squares and RBF Neural Networks in Sports Training Behaviour Prediction

Author:

Qiu Chunyan1,Su Changhong2,Liu Xiaoxiao3,Yu Dian1ORCID

Affiliation:

1. College of Sports and Physical Education, Shandong Sport University, Rizhao 276827, Shandong, China

2. Sports Section, Guangshui Road Primary School, Qingdao 266100, Shandong, China

3. Faculty of Engineering and Technology, School of Engineering, Liverpool John Moores University, Liverpool, UK

Abstract

This paper examines the problem of athletes’ training in sports, exploring the methods and means by which athletes can perform difficult movements in which they normally make minor training errors in order to achieve better competition results and placements. To this end, we test the explanatory and predictive effects of a theoretical model starting with planned behaviour and then use exercise planning, self-efficacy, and support as variables to develop a partial least squares regression model of sports to improve the explanation and prediction of sporting athletes’ intentions and behaviour. An improved RBF network-based method for player behaviour prediction is proposed. On the basis of the RBF analysis, the number of layers and the number of neurons in the hidden layer of the network are adjusted and optimised, respectively, to improve its generalisation and learning abilities, and the athlete behaviour prediction model is given. The results demonstrate the advantages of the improved algorithm, which in turn provides a more scientific approach to the current basketball training.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3