Simulations Based on Experimental Data of the Behaviour of a Monocrystalline Silicon Photovoltaic Module

Author:

Dandoussou Abraham1,Kamta Martin2,Bitjoka Laurent2,Wira Patrice3,Kuitché Alexis2

Affiliation:

1. Department of Electrical and Power Engineering, Higher Technical Teachers’ Training College (HTTTC), University of Buea, Kumba, Cameroon

2. Department of Electrical, Energetic and Automatic Engineering, ENSAI, University of Ngaoundere, Ngaoundere, Cameroon

3. Laboratory of Modeling, Intelligence, Process and Systems (MIPS), University of Haute Alsace, 61 Road Albert Camus, 68093 Mulhouse Cedex, France

Abstract

The performance of monocrystalline silicon cells depends widely on the parameters like the series and shunt resistances, the diode reverse saturation current, and the ideality factor. Many authors consider these parameters as constant while others determine their values based on the I-V characteristic when the module is under illumination or in the dark. This paper presents a new method for extracting the series resistance, the diode reverse saturation current, and the ideality factor. The proposed extraction method using the least square method is based on the fitting of experimental data recorded in 2014 in Ngaoundere, Cameroon. The results show that the ideality factor can be considered as constant and equal to 1.2 for the monocrystalline silicon module. The diode reverse saturation current depends only on the temperature. And the series resistance decreases when the irradiance increases. The extracted values of these parameters contribute to the best modeling of a photovoltaic module which can help in the accurate extraction of the maximum power.

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3