Influence of In-Situ Stress on the Energy Transmission of Blasting Stress Wave in Jointed Rock Mass

Author:

Dong Qian12ORCID,Li XinPing3ORCID,Liu TingTing3ORCID

Affiliation:

1. Hubei Key Laboratory of Blasting Engineering, Jianghan University, Wuhan, Hubei 430056, China

2. Hubei (Wuhan) Institute of Explosion Science and Blasting Technology, Jianghan University, Wuhan, Hubei 430056, China

3. Hubei Key Laboratory of Road-Bridge and Structure Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China

Abstract

The study of influence of in-situ stress on energy transmission of blasting stress wave in jointed rock mass is the basis for improving the utilization rate and optimizing the distribution of explosive energy in underground rock mass during blasting excavation. Thus, a model test was carried out to explore the energy transmission of blasting stress wave in jointed rock mass under different in-situ stresses, and the energy transmitting coefficients of the blasting stress wave were derived. Then, the influencing factors such as the scale and distribution of in-situ stresses and the angle and number of joints were discussed, respectively. The results showed that the energy transmission of blasting stress wave in jointed rock mass was affected by both the intact rock and joints, and the energy transmitting coefficients first increased and then decreased with the rise of static load and lateral static load coefficient, indicating that the lower in-situ stress can enhance the energy transmission of stress wave in rock mass to some extent. While the in-situ stress was relatively large, the stress wave energy dissipation in intact rock was dominant. The number and angle of joints also had a remarkable impact on the energy attenuation of the stress wave; when the stress wave was vertically incident on the joints, the energy transmitting coefficient was the largest. For underground engineering, the orientation of the dominant structural plane and the in-situ stress state of rock mass should be determined firstly, and the blasting parameters can be optimized to improve the utilization of explosive energy and achieve the designed blasting effect.

Funder

Natural Science Foundation of Hubei Province

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3