Impact of Phytomediated Zinc Oxide Nanoparticles on Growth and Oxidative Stress Response of In Vitro Raised Shoots of Ochradenus arabicus

Author:

Al-Qurainy Fahad1,Khan Salim1ORCID,Alansi Saleh1ORCID,Nadeem Mohammad1ORCID,Alshameri Aref1ORCID,Gaafar Abdel-Rhman1,Tarroum Mohamed1,Shaikhaldein Hassan O.1ORCID,Salih Abdalrhaman M.1ORCID,Alenezi Norah Arrak1,Alfarraj Norah S.1

Affiliation:

1. Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

Abstract

Biogenic nanoparticles have potential roles in the growth and development of plants and animals as they are ecofriendly and free of chemical contaminants. In this study, we assessed the effects of phytomediated zinc oxide nanoparticles (ZnONPs) on shoot growth, biochemical markers, and antioxidant system response in Ochradenus arabicus, which is a medicinal plant. The shoot length and fresh and dry weights were found to be higher in groups with 5 and 10 mg/L ZnONPs than in the control. At high concentrations of ZnONPs (50, 100, and 300 mg/L), biomass was decreased in a concentration-dependent manner. The shoot number was observed to be highest at 50 mg/L among all applied concentrations of ZnONPs. The levels of the stress markers proline and TBARS were found to be higher in shoots treated with 100 and 300 mg/L ZnONPs than in the control as well as NP-treated shoots. The levels of antioxidant enzymes were significantly increased at high concentrations of nanoparticles compared with the control. Thus, synthesized phytomediated ZnONPs from shoots of O. arabicus and their application to the same organ of O. arabicus in vitro were found to be effective as a low concentration of nanoparticles promoted shoot growth, resulting in high biomass accumulation. Thus, using green nanotechnology, such endemic plants could be conserved in vitro and multiple shoots could be produced by reducing the phytohormone concentration for multiple uses, such as the production of potential secondary metabolites.

Funder

Ministry of Education – Kingdom of Saudi Arabi

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3