Novel Synonymous and Deep Intronic Variants Causing Primary and Secondary Pyruvate Dehydrogenase Complex Deficiency

Author:

Bruhn Helene12ORCID,Naess Karin12ORCID,Ygberg Sofia123ORCID,Peña-Pérez Lucía245ORCID,Lesko Nicole24ORCID,Wibom Rolf12ORCID,Freyer Christoph1ORCID,Stranneheim Henrik25ORCID,Wedell Anna24ORCID,Wredenberg Anna12ORCID

Affiliation:

1. Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden

2. Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden

3. Department of Child Neurology, Karolinska University Hospital, 17176 Stockholm, Sweden

4. Department of Molecular Medicine and Surgery, Karolinska Institutet, 17177 Stockholm, Sweden

5. Science for Life Laboratory, Karolinska Institutet, 17177 Stockholm, Sweden

Abstract

Pyruvate dehydrogenase complex deficiency (PDCD) is a defect of aerobic carbohydrate metabolism that causes neurological disorders with varying degrees of severity. We report the clinical, biochemical, and molecular findings in patients with primary and secondary PDCD caused by novel atypical genetic variants. Whole-genome sequencing (WGS) identified the synonymous variants c.447A>G, p.(Lys149=) and c.570C>T, p.(Cys190=) in pyruvate dehydrogenase E1 subunit alpha 1 (PDHA1), the deep intronic variants c.1023+2267G>A and c.1023+2302A>G in pyruvate dehydrogenase complex component X (PDHX), and c.185+15054G>A in thiamine pyrophosphokinase (TPK1). Analysis by Sanger and RNA sequencing of cDNA from patient blood and/or cultured fibroblasts showed that the synonymous variants in PDHA1 lead to aberrant splicing and skipping of exons 5 and 5-6 in one of the patients and transcripts lacking exon 6 in the other. The deep intronic variants in PDHX and TPK1 lead to insertion of intronic sequence in the corresponding transcripts. The splice defects in PDHA1 were more pronounced in cultured fibroblasts than in blood. Our findings expand the spectrum of pathogenic variants causing PDCD and highlight the importance of atypical variants leading to aberrant splicing. The severity of the splice defects and resulting biochemical dysfunction varied between tissues, stressing the importance of performing biochemical and transcript analysis in affected tissues. The two males with hemizygous synonymous PDHA1 variants have a mild phenotype and higher PDH enzyme activity than expected, which is consistent with aberrant but leaky splicing with a proportion of the transcripts remaining correctly spliced.

Funder

Cancerfonden

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3