Hydrothermally Produced Activated Carbon Impregnated with ZnO for the Adsorptive Removal of Toxic Pharmaceutical Contaminants from Aqueous Solution

Author:

Vardhan Kilaru Harsha12ORCID,Sree Hrishitha12ORCID,Kumar P. Senthil3ORCID,Rathi B. Senthil12ORCID

Affiliation:

1. Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India

2. Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India

3. Centre for Pollution Control and Environmental Engineering, School of Engineering and Technology, Pondicherry University, Kalapet, Puducherry 605014, India

Abstract

This research explores the adsorption (AD) of diclofenac sodium (DS) onto a Hydrothermally produced activated carbon impregnated with ZnO (HTC-AC/ZnO) surface, considering various factors such as initial concentration (IC), adsorbent dose, contact time, and pH. The characterization of HTC-AC/ZnO was performed using X-ray diffractometer (XRD), scanning electron microscope (SEM), Fourier-transform infrared spectroscopy (FTIR), and nitrogen physisorption spectroscopy (BET). Tests were conducted with different adsorbent doses (0.5–4 g/L) at 303 K and various initial diclofenac concentrations (ranging from 50 mg/L to 250 mg/L) to observe their effects. Additionally, pH values were altered from 2 to 12 to study their influence on AD. Kinetic studies, thermodynamic studies, and AD isotherm models were examined. The Temkin isotherm model (TIM) was found to be the most accurate for DS-AD on HTC-AC/ZnO. For DS-AD on HTC-AC/ZnO, pseudo-first-order models (PFOM), intraparticle diffusion model (IPDM), and pseudo-second-order models (PSOM) were applied, with a correlation coefficient of 0.945, indicating a good fit for PFOM. The kinetics suggested rapid adsorption. Notably, the HTC-AC/ZnO composite exhibited consistent AD characteristics across four consecutive cycles, with a removal efficiency exceeding 99.38%. This suggests that HTC-AC/ZnO is an appropriate and economically viable adsorbent for the elimination of DS from water-based solutions. The investigation provides compelling evidence that HTC-AC/ZnO is a viable adsorbent for the effective elimination of DS from water sources.

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3