OMFM: A Framework of Object Merging Based on Fuzzy Multisets

Author:

Yue Lin123,Zuo Wanli12,Feng Lizhou12ORCID,Guo Lin12

Affiliation:

1. College of Computer Science and Technology, Jilin University, Changchun, Jilin 130012, China

2. Key Laboratory of Symbol Computation and Knowledge Engineering of The Ministry of Education, Changchun, Jilin 130012, China

3. School of Information Technology and Electrical Engineering, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia

Abstract

Information fusion is a process of merging information from multiple sources into a new set of information. Existing work on information fusion is applicable in various scenarios such as multiagent system, group decision making, and multidocument summarization. This paper intends to develop an effective framework to solve object merging problem based on fuzzy multisets. The objects defined in this paper are data segments in document fusion task, referring to the concepts with semantic-related terms of different semantic relations embedded. The fundamental operation is the merge function mapping data segments in multiple fuzzy multisets onto one object, which is a solution. Under this framework, we define quality measures of purity and entropy to quantify the quality of the solutions, balancing accurateness, and completeness of the results. Merge function that yields this kind of solutions is VI-optimal merge function and a series of theoretical properties concerning it are studied. Finally, we investigate the proposed framework in a special application scenario (i.e., document fusion) which is related to the task of multidocument summarization and show how the framework works with illustrative example.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Comprehensive Literature Review of 50 Years of Fuzzy Set Theory;International Journal of Computational Intelligence Systems;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3