Mathematical and Numerical Analysis of Heat Transfer Enhancement by Distribution of Suction Flows inside Permeable Tubes

Author:

Khaled A.-R. A.1

Affiliation:

1. Mechanical Engineering Department, King Abdulaziz University, P.O. Box 80204, Jeddah 21589, Saudi Arabia

Abstract

Heat transfer enhancement in permeable tubes subjected to transverse suction flow is investigated in this work. Both momentum and energy equations are solved analytically and numerically. Both solutions based on negligible entry regions are well matched. Two different suction velocity distributions are considered. A parametric study including the influence of the average suction velocity and the suction velocity profile is conducted for various Peclet numbers. It is found that enhancement of heat transfer over that in impermeable tubes is only possible with large Peclet numbers. This enhancement increases as suction velocities towards the tube outlet increase and as those towards the tube inlet decrease simultaneously. The identified enhancement mechanisms are expanding the entry regions, increasing the transverse advection, and increasing the downstream excess temperatures under same transverse advection. The average suction velocity that produces maximum enhancement increases as the Peclet number increases until it reaches asymptotically its uppermost value at large Peclet numbers. The maximum reported enhancement ratios for the exponential and linear suction velocity distributions are 17.62-fold and 14.67-fold above those for impermeable tubes, respectively. This work demonstrates that significant heat transfer enhancement is attainable when the suction flow inside the permeable tubes is distributed properly.

Funder

King Abdulaziz University of Saudi Arabia

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3