Anchoring Ultrasmall Pt Nanocrystals onto Carbon Nanohorn-Decorated 3D Graphene Networks to Boost Methanol Oxidation Reaction

Author:

Shen Binfeng1,Yao Haitao1,He Haiyan1ORCID,Huang Huajie1ORCID

Affiliation:

1. College of Mechanics and Materials, Hohai University, Nanjing 210098, China

Abstract

The successful commercialization of the direct methanol fuel cell (DMFC) is inseparable from the development of advanced Pt-based anode catalysts with high electrocatalytic activity and acceptable manufacturing cost. Here, we present a robust bottom-up strategy to anchor ultrasmall Pt nanocrystals with an average diameter of only 2.3 nm onto carbon nanohorn-decorated three-dimensional (3D) graphene networks (Pt/CNH-G) through a controllable self-assembly process. The as-derived 3D Pt/CNH-G catalysts manifest a series of distinctive architectural advantages, such as interconnected porous frameworks, large accessible surface areas, plentiful active cones, highly dispersed Pt nanoparticles, and good electron conductivity. Consequently, the optimized Pt/CNH-G catalyst is endowed with exceptional methanol oxidation properties with a large electrochemical active surface area of 128.6 m2 g-1, a high mass activity of 1626.0 mA mg-1, and excellent long-term stability, which are significantly superior to those of conventional Pt catalysts supported by carbon black, carbon nanotube, carbon nanohorn, and graphene matrices.

Funder

Hohai University

Publisher

Hindawi Limited

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3