Green Synthesis Method of ZnO Nanoparticles using Extracts of Zingiber officinale and Garlic Bulb (Allium sativum) and Their Synergetic Effect for Antibacterial Activities

Author:

Kebede Urge Solomon1ORCID,Tiruneh Dibaba Solomon1ORCID,Belay Gemta Abebe1ORCID

Affiliation:

1. Department of Applied Physics, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia

Abstract

In this paper, antibacterial activities of zinc oxide (ZnO) nanoparticles synthesized through green method using garlic bulb (Allium sativum), ginger (Zingiber officinale) extracts, and their mixture are reported. The synthesized ZnO NPs were characterized by X-ray diffraction (XRD), ultraviolet visible (UV–vis), photoluminescence (PL), spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The crystalline sizes of ZnO NPs synthesized using garlic bulb (Allium sativum) extract, ginger (Zingiber officinale) root extract, and their mixture were 19.8, 21.94, and 23.86 nm, respectively. Similarly, the corresponding peak absorbances were 369.5, 377.5, and 374 nm, respectively. The antibacterial activities of synthesized ZnO NPs were tested against gram-negative bacteria Escherichia coli (E. coli) and Pseudomonas putida (P. putida) and gram-positive bacteria Staphylococcus aureus (S. aureus) and Streptococcus pyogenes (S. pyogenes). The ZnO NPs synthesized using the mixture of garlic bulb (Allium sativum) and ginger (Z. officinale) root extract have shown maximum inhibition zone against gram-negative bacteria (P. putida: 28.67 ± 0.82 mm) and gram-positive bacteria (S. pyogenes: 10.67 ± 0.47 mm) as compared to ZnO NPs synthesized using the two extracts separately. On the other hand, ZnO NPs obtained from garlic bulb and Z. officinale root extracts exhibited maximum inhibition zone against E. coli (19 ± 0.82 mm) and S. aureus (16.4 ± 0.47 mm), respectively.

Funder

Adama Science and Technology University

Publisher

Hindawi Limited

Subject

General Materials Science

Reference46 articles.

1. Nanoparticles and their biological and environmental applications

2. HussainS.Investigation of structural and optical properties of nanocrystalline ZnO2008Linköping, SwedenThe Department of Physics, Chemistry and Biology, Linköpings UniversityThesis Report

3. Room-Temperature Biosynthesis of Ferroelectric Barium Titanate Nanoparticles

4. Metal oxide nanoparticles and their applications in nanotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3