Motion Planning of Autonomous Mobile Robot Using Recurrent Fuzzy Neural Network Trained by Extended Kalman Filter

Author:

Zhu Qidan1,Han Yu1ORCID,Liu Peng1,Xiao Yao1,Lu Peng1,Cai Chengtao1

Affiliation:

1. College of Automation, Harbin Engineering University, Harbin 15001, China

Abstract

This paper proposes a novel motion planning method for an autonomous ground mobile robot to address dynamic surroundings, nonlinear program, and robust optimization problems. A planner based on the recurrent fuzzy neural network (RFNN) is designed to program trajectory and motion of mobile robots to reach target. And, obstacle avoidance is achieved. In RFNN, inference capability of fuzzy logic and learning capability of neural network are combined to improve nonlinear programming performance. A recurrent frame with self-feedback loops in RFNN enhances stability and robustness of the structure. The extended Kalman filter (EKF) is designed to train weights of RFNN considering the kinematic constraint of autonomous mobile robots as well as target and obstacle constraints. EKF’s characteristics of fast convergence and little limit in training data make it suitable to train the weights in real time. Convergence of the training process is also analyzed in this paper. Optimization technique and update strategy are designed to improve the robust optimization of a system in dynamic surroundings. Simulation experiment and hardware experiment are implemented to prove the effectiveness of the proposed method. Hardware experiment is carried out on a tracked mobile robot. An omnidirectional vision is used to locate the robot in the surroundings. Forecast improvement of the proposed method is then discussed at the end.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3