A Satellite Observation Data Transmission Scheduling Algorithm Oriented to Data Topics

Author:

Chen Hao1ORCID,Zhai Baorong2,Wu Jiangjiang1,Du Chun1ORCID,Li Jun1

Affiliation:

1. College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China

2. Xi’an Satellite Control Center, Xi’an, China

Abstract

The scheduling of Earth Observation Satellite (EOS) data transmission is a complex combinatorial optimization problem. With the development of remote sensing applications, a new special requirement named data transmission oriented to topics has appeared. It supposes that the data obtained from each observation activity by satellites belong to certain observation data topics, and every observation data topic has completeness and timeliness requirements. Unless all of the observation data belonging to one topic has been transmitted to the ground before the expected time, the value of the observation data will be decayed sharply and only a part of the rewards (or even no reward) for the data transmission will be obtained. Current researches do not meet the new data topic transmission requirements well. Based on the characteristics of the problem, a mathematic scheduling model is established, and a novel hybrid scheduling algorithm based on evolutionary computation is proposed. In order to further enhance the performance and speed up the convergence process of our algorithm, a domain-knowledge-based mutation operator is designed. Quantitative experimental results show that the proposed algorithm is more effective to solve the satellite observation data topic transmission scheduling problem than that of the state-of-the-art approaches.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3