A Preliminary Study of Seeding Absence Detection Method for Drills on the Soil Surface of Cropland Based on Ultrasonic Wave without Soil Disturbance

Author:

Lu Caiyun1ORCID,Li Hongwen1ORCID,He Jin1,Wang Qingjie1,Wang Chao1,Liu Junxiao1

Affiliation:

1. College of Engineering, China Agricultural University, Beijing 100097, China

Abstract

Seeding absence detection is essential during seeding operation, since it affects the subsequent crop performance. Existing methods cannot detect the seeding absence position immediately after planting without soil disturbance. In this paper, a nondestructive detection method for finding out the seeding absence position of drills is put forward. It focuses on the echo energy reflected by the circle energy inside the tilled cropland soil, to which the sensor is attached directly on the soil surface, not on ultrasonic waves that penetrate the soil-seed medium below tilled soil. Firstly, the energy circle is used to analyze the sound field distribution characteristics of the sensor in cropland soil. According to the size difference of the seeding absence length value and energy circle diameter, the total energy for three different cases with eight steps for each case is discussed in detail, and in order to find the left and right boundary lines and the length value of seeding absence, a program is designed to help with calculating four base positions automatically. At last, the nondestructive detection method is evaluated by the experiments, and the results demonstrate that the proposed method is accurate, efficient, and convenient in finding the seeding absence position of drilling seeds on the soil surface without soil disturbance.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3