Solving of Two-Dimensional Unsteady-State Heat-Transfer Inverse Problem Using Finite Difference Method and Model Prediction Control Method

Author:

Wang Shoubin1ORCID,Ni Rui1

Affiliation:

1. School of Control and Mechanical Engineering, Tianjin Chengjian University, Tianjin 300384, China

Abstract

The Inverse Heat Conduction Problem (IHCP) refers to the inversion of the internal characteristics or thermal boundary conditions of a heat transfer system by using other known conditions of the system and according to some information that the system can observe. It has been extensively applied in the fields of engineering related to heat-transfer measurement, such as the aerospace, atomic energy technology, mechanical engineering, and metallurgy. The paper adopts Finite Difference Method (FDM) and Model Predictive Control Method (MPCM) to study the inverse problem in the third-type boundary heat-transfer coefficient involved in the two-dimensional unsteady heat conduction system. The residual principle is introduced to estimate the optimized regularization parameter in the model prediction control method, thereby obtaining a more precise inversion result. Finite difference method (FDM) is adopted for direct problem to calculate the temperature value in various time quanta of needed discrete point as well as the temperature field verification by time quantum, while inverse problem discusses the impact of different measurement errors and measurement point positions on the inverse result. As demonstrated by empirical analysis, the proposed method remains highly precise despite the presence of measurement errors or the close distance of measurement point position from the boundary angular point angle.

Funder

National Key Foundation for Exploring Scientific Instrument of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3