Nonlinear Optimization-Based Robust Control Approach for a Two-Stage Anaerobic Digestion Process

Author:

Tawai Atthasit1ORCID,Sriariyanun Malinee2ORCID

Affiliation:

1. The Sirindhorn International Thai-German Graduate School of Engineering, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand

2. Biorefinery and Process Automation Engineering Center (BPAEC), King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand

Abstract

A two-stage anaerobic digestion (AD) process has been applied to improve the efficiency of methane production from various organic materials. However, the performance of traditional process controllers may be limited by differences in the rate of biochemical reactions, process uncertainties, and the consequences of interconnection between the two bioreactors. In this work, a nonlinear optimization-based control strategy that applies an analytical model predictive control (AMPC) scheme with an adaptive optimal set-point is proposed for the control of the two-stage AD system. The objectives of the proposed control system are to stabilize the system under uncertain operating conditions and maximize biomethane production. The optimal set-points for the controller are adapted in real-time operation, and then the control system is performed to manipulate the controlled output to the optimal trajectories. Compensators and nonlinear state observers are applied to handle the process/model mismatch and estimate unmeasured variables. The proposed control system is applied to the process with disturbances, fluctuations of inlet stream concentrations, and changes in the bacterial growth rate, and the control performance is investigated. Simulation results show that the developed control scheme automatically adjusts the optimal set-points and provides adequate control actions to maintain the maximum rate of methane production. The results of this investigation demonstrate that the control strategy promotes different biochemical reactions, avoids the inhibition effect, and handles the mutual effects between acidogenic and methanogenic bioreactors for methane production effectively.

Funder

King Mongkut's University of Technology North Bangkok

Publisher

Hindawi Limited

Subject

General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3