Digital Twin-Based Investigation of a Building Collapse Accident

Author:

Zheng Zhe1ORCID,Liao Wenjie1ORCID,Lin Jiarui1ORCID,Zhou Yucheng1ORCID,Zhang Chi12,Lu Xinzheng1ORCID

Affiliation:

1. Key Laboratory of Civil Engineering Safety and Durability of Ministry of Education, Tsinghua University, Beijing, China

2. China Southwest Architectural Design and Research Institute Corporation Ltd., Chengdu, China

Abstract

The collapse of engineering structures can cause significant casualties and have negative social effects. Collapse accident investigation can elucidate the potential causes and mechanisms of the collapse accident, thus remediating future structural collapse and enhancing the resilience. However, there are some obstacles to investigating complicated collapse accidents using conventional methods. For example, the out-syncs between on-site investigation and simulation analysis are intractable and can make discovering the cause of collapse accidents difficult. Hence, a digital twin-based investigation method for collapse accidents was proposed. First, basic virtual digital building models are established using real-world information. Then, after mapping the data from the real world into the virtual space, the corresponding highly realistic multistage models before and after the building collapse accident are constructed and synchronized. Using the digital twin method, investigators with multidisciplinary knowledge can efficiently integrate, update, and check the models. Finally, the potential collapse mechanism was revealed with the assistance of the corresponding models. To demonstrate the effectiveness of the proposed digital twin-based investigation method, a real collapse accident investigation is utilized as an example. These results validated our method.

Funder

National Key R&D Program

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3