Similarity Learning and Generalization with Limited Data: A Reservoir Computing Approach

Author:

Krishnagopal Sanjukta1ORCID,Aloimonos Yiannis2,Girvan Michelle134

Affiliation:

1. Department of Physics, University of Maryland, College Park, MD 20740, USA

2. Department of Computer Science, University of Maryland, College Park, MD 20740, USA

3. Santa Fe Institute, New Mexico 87501, USA

4. London Mathematical Laboratory, London WC2N 6DF, UK

Abstract

We investigate the ways in which a machine learning architecture known as Reservoir Computing learns concepts such as “similar” and “different” and other relationships between image pairs and generalizes these concepts to previously unseen classes of data. We present two Reservoir Computing architectures, which loosely resemble neural dynamics, and show that a Reservoir Computer (RC) trained to identify relationships between image pairs drawn from a subset of training classes generalizes the learned relationships to substantially different classes unseen during training. We demonstrate our results on the simple MNIST handwritten digit database as well as a database of depth maps of visual scenes in videos taken from a moving camera. We consider image pair relationships such as images from the same class; images from the same class with one image superposed with noise, rotated 90°, blurred, or scaled; images from different classes. We observe that the reservoir acts as a nonlinear filter projecting the input into a higher dimensional space in which the relationships are separable; i.e., the reservoir system state trajectories display different dynamical patterns that reflect the corresponding input pair relationships. Thus, as opposed to training in the entire high-dimensional reservoir space, the RC only needs to learns characteristic features of these dynamical patterns, allowing it to perform well with very few training examples compared with conventional machine learning feed-forward techniques such as deep learning. In generalization tasks, we observe that RCs perform significantly better than state-of-the-art, feed-forward, pair-based architectures such as convolutional and deep Siamese Neural Networks (SNNs). We also show that RCs can not only generalize relationships, but also generalize combinations of relationships, providing robust and effective image pair classification. Our work helps bridge the gap between explainable machine learning with small datasets and biologically inspired analogy-based learning, pointing to new directions in the investigation of learning processes.

Funder

University of Maryland

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3