Study on Blending of Wall Material of the Nonel Tube by CSW/PE-g-MAH

Author:

Li Hong-wei1,Zhang Bin-bin1,Yang Ji-nian2ORCID,Li Huan1,Gui Ji-chang1ORCID,Lei Zhan1

Affiliation:

1. School of Chemistry and Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, Anhui, China

2. School of Material Science and Engineering, Anhui University of Science and Technology, Huainan 232001, Anhui, China

Abstract

In order to improve the strength and resistance of ordinary nonel tubes, calcium sulfate whiskers (CSW, treated with silane coupling agent) and maleic anhydride grafted polyethylene (PE-g-MAH) are used to control the wall material of the nonel tube that the blending of the low-density polyethylene was enhanced. The effects of mass fraction of CSW or PE-g-MAH on the tensile properties, interfacial structure, melting and crystallization characteristics, and thermal decomposition behavior of the composite system were studied, and the thermal decomposition kinetics were calculated. The results show that, relative to pure LDPE, the strength of LDPE/CSW (85/15) is increased by 7.58%, and the strength of LDPE/CSW/PE-g-MAH (84/15/1) is increased by 7.58%. The addition of CSW or PE-g-MAH has gradually changed the fracture mode of the LDPE matrix. Thermal analysis shows that CSW can reduce the crystallinity of LDPE. The melting and crystallization characteristics of LDPE/CSW/PE-g-MAH composites have little effect, but the thermal decomposition stability is improved. The kinetic analysis showed that the reaction order (n) was around 1, CSW could improve LDPE/CSW thermal decomposition activation energy, and PE-g-MAH increased the thermal decomposition activation energy of LDPE/CSW/PE-g-MAH.

Funder

Anhui Provincial Department of Education Major Scientific Research Project

Publisher

Hindawi Limited

Subject

Computer Science Applications,Instrumentation,General Chemical Engineering,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3