Infiltration of Blood-Derived Macrophages Contributes to the Development of Diabetic Neuropathy

Author:

Sun Jing-Jing12ORCID,Tang Lin12,Zhao Xiao-Pei12ORCID,Xu Jun-Mei12,Xiao Yang3ORCID,Li Hui12ORCID

Affiliation:

1. Department of Anesthesiology, The Second Xiangya Hospital, Central South University, 139 Ren-Min Road, Changsha 410011, China

2. Hunan Provincial Anesthesia Clinics and Technology Research Center, 139 Ren-Min Road, Changsha 410011, China

3. Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China

Abstract

Background and Objective. Diabetic neuropathic pain (DNP) is a common complication associated with diabetes. Currently, its underlying pathomechanism remains unknown. Studies have revealed that the recruitment of blood monocyte-derived macrophages (MDMs) to the spinal cord plays a pivotal role in different models of central nervous system injury. Therefore, the present study aimed at exploring the infiltration and function of MDMs in DNP using a mice model. Methods. Diabetes was induced using streptozotocin in male A/J mice. Mechanical withdrawal thresholds were measured weekly to characterize neuropathy phenotype. Quantitative analysis of CD11b was performed and visualized by immunofluorescence. Spinal cord cells were isolated from myelin and debris by Percoll gradient. Flow cytometry was used to label CD11b and CD45 antibodies to differentiate MDMs (CD45highCD11b+) from resident microglia (CD45lowCD11b+). Mice were injected with clodronate liposomes to investigate the role of MDMs in DNP. The successful depletion of monocytes was determined by flow cytometry. Results. The DNP mice model was successfully established. Compared with nondiabetic mice, diabetic mice displayed a markedly higher level of CD11b immunofluorescence in the spinal cord. The number of CD11b-positive microglia/macrophages gradually increased over the 28 days of testing after STZ injection, and a significant increase was observed on Day 14 (P<0.01) and 28 (P<0.01). Further analysis by flow cytometry showed that the infiltration of peripheral macrophages began to increase in 2 weeks (P<0.001) and reached a maximum at 4 weeks (P<0.001) post-STZ injection compared to the control. The depletion of MDMs by clodronate liposomes alleviated diabetes-induced tactile allodynia (P<0.05) and reduced the infiltration of MDMs (P<0.001) as well as the expression of IL-1β and TNF-α in the spinal cord (P<0.05). Conclusions. The infiltration of blood MDMs in the spinal cord may promote the development of painful neuropathy in diabetes.

Funder

Natural Science Foundation of Hunan Province

Publisher

Hindawi Limited

Subject

Immunology,General Medicine,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3