Container Terminal Berth and Yard Collaborative Allocation for Import and Export Synchronous Operations by Computational Logistics

Author:

Li Bin1ORCID,Jiang Xiong2ORCID,Lei Junhan2ORCID

Affiliation:

1. School of Mechanical and Automotive Engineering, Fujian University of Technology, Fuzhou 350118, China

2. School of Transportation, Fujian University of Technology, Fuzhou 350118, China

Abstract

Container terminal operators have practical and clear requirements on improving operational efficiency and service level to address running challenges. The resource allocation and collaborative scheduling of quayside berth and storage yard are vital issues in the optimization of container terminal handling systems (CTHSs). The allocation of berth in quayside and blocks on storage yard directly affects the running efficiency of CTHS. Consequently, we focus on the berth and yard collaborative allocation for import and export synchronous operations (BYCA-IESOs) and propose the BYCA-IESO research model based on synchronous or asynchronous integrated scheduling strategy by computational logistics. The BYCA-IESO model is a mixed integer quadratic programming model to minimize multiple time consumption of calling liners and the total horizontal transferring distances of yard trailers at container terminals. Furthermore, we design other two allocation policies for comparison on the BYCA-IESO, which are both multistage scheduling strategy profiles. CPLEX 20.1.0 is applied to implement and solve the model and tactics of BYCA-IESO. Accordingly, the feasibility, validity, and relative merits of the models and strategies are obtained and verified by analyzing and comparing multiple numerical experimental results.

Funder

Ministry of Education of the People's Republic of China

Publisher

Hindawi Limited

Subject

Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Joint Operational Scheme of Berths and Yards at Container Terminals with Computational Logistics and Computational Intelligence;2022 IEEE 25th International Conference on Computer Supported Cooperative Work in Design (CSCWD);2022-05-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3