Discover the Hidden Attack Path in Multiple Domain Cyberspace Based on Reinforcement Learning

Author:

Zhang Lei12ORCID,Li Hongmei2ORCID,Xia Shiming1ORCID,Pan Yu1ORCID,Bai Wei1ORCID,Feng Qin1,Li Wei1ORCID,Zheng Qibin3ORCID,Guo Shize1,Pan Zhisong1ORCID

Affiliation:

1. Army Engineering University of PLA, Nanjing, China

2. Academy of Military Science, Beijing, China

3. Advanced Institute of Big Data, Beijing, China

Abstract

There are certain vulnerabilities at the beginning of multiple domain cyberspace configuration. How to discover these potential vulnerabilities has been a hot topic. This paper proposes to find these cyberspace vulnerabilities by discovering the shortest attack path in multiple domain cyberspace. In order to discover more and shorter attack paths, we train an agent as an attacker to discover multiple domain cyberspace attack paths. We formulate the discovering attack paths as a reinforcement learning (RL) problem. With this technique, we added a multiple domain action select module to RL that can pick an executable action in a state. By using the proposed method, we can discover more hidden attack paths and shorter attack paths to analyze the potential vulnerabilities to cyberspace. Finally, we created a simulated cyberspace experimental environment to test our proposed method. The experimental results show that the proposed method can discover more hidden multiple domain attack paths and shorter attack paths than the existing methods.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Reference32 articles.

1. Cyber-physical systems

2. Ulrike von Luxburg, isabelle guyon and roman garnett;D. D. Lee

3. Energy-Efficient Deployment of Intelligent Mobile Sensor Networks

4. Intelligent Network Awareness;H. Yao,2019

5. Statistical Techniques for Detecting Traffic Anomalies Through Packet Header Data

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3