A Novel Fault Diagnosis Method for Denoising Autoencoder Assisted by Digital Twin

Author:

Cai Wenan1ORCID,Zhang Qianqian2ORCID,Cui Jie3

Affiliation:

1. School of Mechanical Engineering, Jinzhong University, Jinzhong 030619, China

2. School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China

3. School of Mechanical Engineering, North University of China, Taiyuan, Shanxi 030051, China

Abstract

Digital twin (DT) is an important method to realize intelligent manufacturing. Traditional data-based fault diagnosis methods such as fractional-order fault feature extraction methods require sufficient data to train a diagnosis model, which is unrealistic in a dynamically changing production process. The ultrahigh-fidelity DT model can generate fault state data similar to the actual system, providing a new paradigm for fault diagnosis. This paper proposes a novel digital twin-assisted fault diagnosis method for denoising autoencoder. First, in order to solve the problem of limited or unavailable fault state data for machines in dynamically variable production scenarios, a DT model of the machine is established. The model can simulate a dynamically changing production process, thereby generating data for different failure states. Second, a novel denoising autoencoder (NDAE) with Mish as the activation function is proposed and trained using the source domain data generated by DT. Finally, in order to verify the effectiveness and feasibility of the proposed method, the method is applied to a fault diagnosis example of a triplex pump, and the results show that the method can realize intelligent fault diagnosis when the fault state data are limited or unavailable.

Funder

Shanxi Province Scientific and technological innovation project of colleges and universities

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3