Development of Monoclonal Antibodies against CMP-N-Acetylneuraminate-beta-galactosamide-alpha-2,3-sialyltransferase 1 (ST3Gal-I) Recombinant Protein Expressed inE. coli

Author:

Gupta Anuj Kumar1,Kaur Parvinder1,Patil Harshada1,Kadam Pallavi1,Bhanushali Paresh B.1,Chugh Manoj1

Affiliation:

1. Yashraj Biotechnology Ltd., Plot No. C 232, TTC Industrial Area, MIDC, Navi Mumbai 400705, India

Abstract

Aberrant glycosylation is one of the major hallmarks of cancer with altered gene expression signatures of sialyltransferases. ST3Gal-I, a sialyltransferase, is known to play a crucial role in sialylation of T antigen in bladder cancer and it has reported elevated expression in breast carcinogenesis with increased tumor progression stages. The aim of the current study is to develop new monoclonal antibodies (mAbs) against human ST3Gal-I and evaluate their diagnostic potential. We developed a repertoire of stable hybridoma cell lines producing high-affinity IgG antibodies against recombinant human ST3Gal-I, expressed inE. coliBL21-DE3 strain. In order to demonstrate the diagnostic value of the mAbs, various clones were employed for the immunohistochemistry analysis of ST3Gal-I expression in cancerous tissues. Antibodies generated by 7E51C83A10 clone demonstrated a strong and specific fluorescence staining in breast cancer tissue sections and did not exhibit significant background in fibroadenoma sections. In conclusion, the mAbs raised against recombinant ST3Gal-I recognize cellular ST3Gal-I and represent a promising diagnostic tool for the immunodetection of ST3Gal-I expressing cells. Specific-reactivity of clone 7E51C83A10 mAbs towards ST3Gal-I was also confirmed by immunoblotting. Therefore, our observations warrant evaluation of ST3Gal-I as a potential marker for cancer diagnosis at larger scale.

Funder

Yashraj Biotechnology Limited

Publisher

Hindawi Limited

Subject

Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3