Commercial Vehicle Ride Comfort Optimization Based on Intelligent Algorithms and Nonlinear Damping

Author:

He Shuilong12ORCID,Chen Keren1,Xu Enyong2,Wang Wei2,Jiang Zhansi1ORCID

Affiliation:

1. School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China

2. Dongfeng Liuzhou Motor Co., Ltd., Liuzhou 545005, China

Abstract

The method chosen to conduct vehicle dynamic modeling has a significant impact on the evaluation and optimization of ride comfort. This paper summarizes the current modeling methods of ride comfort and their limitations. Then, models based on nonlinear damping and equivalent damping and the multibody dynamic model are developed and simulated in Matlab/Simulink and Adams/Car. The driver seat responses from these models are compared, showing that the accuracy of the ride comfort model based on nonlinear damping is higher than the one based on equivalent damping. To improve the reliability of ride comfort optimization and analysis, a ride comfort optimization method based on nonlinear damping and intelligent algorithms is proposed. The sum of the frequency-weighted RMS of the driver seat acceleration, the RMS of dynamic tyre load, and suspension working space is taken as the objective function in this article, using nonlinear damping coefficients and stiffness of suspension as design variables. By applying the particle swarm optimization (PSO), cuckoo search (CS), dividing rectangles (DIRECT), and genetic algorithm (GA), a set of optimal solutions are obtained. The method efficiency is verified through a comparison between frequency-weighted RMS before and after optimization. Results show that the frequency-weighted RMS of driver seat acceleration, RMS values of the suspension working space of the front and rear axles, and RMS values of the dynamic tyre load of front and rear wheels are decreased by an average of 27.4%, 21.6%, 25.0%, 19.3%, and 22.3%, respectively. The developed model is studied in a pilot commercial vehicle, and the results show that the optimization method proposed in this paper is more practical and features improvement over previous models.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3