A Reduced-Order Model for Active Suppression Control of Vehicle Longitudinal Low-Frequency Vibration

Author:

Hao Donghao1ORCID,Zhao Changlu1,Huang Ying12ORCID

Affiliation:

1. Research Center of Power Machinery, Beijing Institute of Technology, Beijing 100081, China

2. Beijing Collaborative Innovation Center for Electric Vehicles, Beijing 100081, China

Abstract

Establishing a prediction model, with linearity and few dof (degree of freedom), is a key step for the design of a control algorithm based on the modern control theory. In this paper, such a model is needed for active suppression of vehicle longitudinal low-frequency vibration. However, many dynamic processes in the vehicle have different effects on the vibration. Therefore, a detailed coupling model is firstly established, considering the dynamics of the torsional vibrations of the driveline and the tire, the tire force nonlinearity, and the vehicle vertical and pitch vibrations. Based on this model, sensitivity analysis is conducted and the results show that the tire slip, the torsional stiffness of the half-shaft, and the tire have great influences on the longitudinal vibration. Then a three-dof model is obtained by linearizing the tire slip into damping. A parameter estimation method is designed to obtain the model parameters. Finally, the model is validated. The time domain response, error analysis, and frequency response results demonstrate that the 3-dof model has a good consistency with the detailed coupling model. It is suitable as a control-oriented model.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3