A Self-Adaptive Recommendation Method for Online Ideological and Political Teaching Resources Based on Deep Reinforcement Learning

Author:

Jin Ying1ORCID

Affiliation:

1. Haikou University of Economics, Haikou, Hainan Province 571127, China

Abstract

The online ideological as well as the political teaching resource management system structure is established in the view of information management in colleges and universities. Furthermore, the online ideological as well as the political teaching information level is improved by combining the optimized design of resource recommendation model. In this paper, an online ideological as well as political teaching resource adaptive recommendation system and algorithm, which is designed on deep reinforcement learning, is suggested. The cost relationship model between online ideological as well as the political teaching resources and learning profitability is constructed. Similarly, the multidimensional constraint index parameter analysis method is adopted, and the adaptive matching model of online ideological as well as the political teaching resources is established. According to online ideological as well as the political teaching norms, combined with the analysis of high-quality educational resources of audience groups, the dynamic evaluation of online ideological as well as the political teaching resources and the adaptive matching model of interest preferences are established. Finally, the deep reinforcement learning method is adopted. By analyzing the characteristics of the resource structure model of online ideological as well as the political teaching resources, through benefit evaluation, resource supply and demand balance management analysis and balanced game control, the online ideological as well as the political teaching resources management system can be improved and self-adaptive recommended. The simulation outcomes indicate that this approach has noble adaptability and high correctness in recommending online ideological as well as the political teaching resources.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Reference24 articles.

1. Hybrid recommendation algorithm based on probability matrix factorization;F. Yang;Journal of Computer Applications,2018

2. Improving tag-based recommendation with the collaborative value of wiki pages for knowledge sharing

3. Collaborative filtering recommendation algorithm incorporating user’s reviews and contextual information [J];F. Z. Zhang;Journal of Chinese Computer Systems,2014

4. Application of adaptive resource allocation algorithm and communication network security in improving educational video transmission quality [J];G. Wu;AEJ - Alexandria Engineering Journal,2021

5. Using Unified Probabilistic Matrix Factorization for Contextual Advertisement Recommendation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3