Affiliation:
1. Department of Computer Science and Engineering, Lovely Professional University, Punjab, India
2. Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari Aldo Moro, Bari BA, Italy
3. Department of Marketing, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
Abstract
Skin cancer is one of the most common diseases that can be initially detected by visual observation and further with the help of dermoscopic analysis and other tests. As at an initial stage, visual observation gives the opportunity of utilizing artificial intelligence to intercept the different skin images, so several skin lesion classification methods using deep learning based on convolution neural network (CNN) and annotated skin photos exhibit improved results. In this respect, the paper presents a reliable approach for diagnosing skin cancer utilizing dermoscopy images in order to improve health care professionals’ visual perception and diagnostic abilities to discriminate benign from malignant lesions. The swarm intelligence (SI) algorithms were used for skin lesion region of interest (RoI) segmentation from dermoscopy images, and the speeded-up robust features (SURF) was used for feature extraction of the RoI marked as the best segmentation result obtained using the Grasshopper Optimization Algorithm (GOA). The skin lesions are classified into two groups using CNN against three data sets, namely, ISIC-2017, ISIC-2018, and PH-2 data sets. The proposed segmentation and classification techniques’ results are assessed in terms of classification accuracy, sensitivity, specificity, F-measure, precision, MCC, dice coefficient, and Jaccard index, with an average classification accuracy of 98.42 percent, precision of 97.73 percent, and MCC of 0.9704 percent. In every performance measure, our suggested strategy exceeds previous work.
Subject
Health Informatics,Biomedical Engineering,Surgery,Biotechnology
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献