Sublethal Oxidative Stress Induces the Premature Senescence of Human Mesenchymal Stem Cells Derived from Endometrium

Author:

Burova Elena1,Borodkina Aleksandra1,Shatrova Alla1,Nikolsky Nikolay1

Affiliation:

1. Department of Intracellular Signaling and Transport, Institute of Cytology of Russian Academy of Sciences, St. Petersburg 194064, Russia

Abstract

The specific responses of mesenchymal stem cells to oxidative stress may play a crucial role in regulation of tissue homeostasis as well as regeneration of organs after oxidative injury. The responses of human endometrium-derived mesenchymal stem cells (hMESCs) to oxidative stress remain still unknown. Herein, we examined the impact of H2O2on cell viability, induction of premature senescence, and apoptosis. hMESCs were highly resistant to H2O2compared with human diploid fibroblasts. To test a hypothesis whether hMESCs may undergo oxidative stress-induced premature senescence, cells were briefly exposed to the sublethal H2O2doses. H2O2-treated cells were permanently arrested, lost Ki67 proliferation marker, and exhibited a senescent phenotype including cell hypertrophy and increased SA-β-Gal activity. Additionally, in stressed cells the expression levels of p21Cip1, SOD1, SOD2, and GPX1 were elevated. hMESCs survived under stress were not able to resume proliferation, indicating the irreversible loss of proliferative potential. While the low H2O2doses promoted senescence in hMESCs, the higher H2O2doses induced also apoptosis in a part of the cell population. Of note, senescent hMESCs exhibited high resistance to apoptosis. Thus, we have demonstrated for the first time that hMESCs may enter a state of premature senescence in response to sublethal oxidative stress.

Funder

Russian Foundation for Basic Research

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3