Impedance with Finite-Time Control Scheme for Robot-Environment Interaction

Author:

Hu Heyu1ORCID,Wang Xiaoqi1ORCID,Chen Lerui1ORCID

Affiliation:

1. School of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

For the robot system with the uncertain model and unknown environment parameters, a control scheme combining impedance and finite time is proposed. In order to obtain accurate force control performance indirectly by using position tracking, the control scheme is divided into two parts: an outer loop for force impedance control and an inner loop for position tracking control. In the outer loop, in order to eliminate the force tracking error quickly, the impedance control based on force is adopted; when the robot contacts with the environment, the satisfactory force tracking performance can be obtained. In the inner loop, the finite-time control method based on the homogeneous system is used. Through this method, the desired virtual trajectory generated by the outer loop can be tracked, and the contact force tracking performance can be obtained indirectly in the direction of force. This method does not need the dynamics model knowledge of the robot system, thus avoiding the online real-time calculation of the inverse dynamics of the robot. The unknown uncertainty and external interference of the system are obtained online by using the time-delay estimation, and the control process is effectively compensated, so the algorithm is simple, the convergence speed is fast, and the practical application is easy. The theory of finite-time stability is used to prove that the closed-loop system is finite-time stable, and the effectiveness of the algorithm is proved by simulations.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3