Risk Analysis of Vehicle Rear-End Collisions at Intersections

Author:

Dong Sheng1ORCID,Zhang Minjie1,Li Zhenjiang2

Affiliation:

1. School of Civil and Transportation Engineering, Ningbo University of Technology, Fenghua Rd. #201, Jiangbei District, Ningbo, Zhejiang Province, 315211, China

2. The State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China

Abstract

Aiming at solving a typical problem of past research using accident experience statistics of being unable to adapt to changing traffic flows, this paper provides an evaluation method of the risk of vehicle rear-end collisions at red-light-camera (RLC) intersections based on theoretical probabilities. Taking advantage of trajectory data of vehicles at the two similar intersections, which are Cao’an Road and Lvyuan Road with RLCs and Cao’an Road and Anhong Road without RLCs in Shanghai, a binary logit (BL) model of stop-and-go decision-making is established. Using the model and adjusting the headway and potential travel time, we can perform simulation and analysis of rear-end collisions. The result shows that this method is feasible to analyse the influence of RLCs on rear-end collisions. The analysis indicates that RLCs can cause higher speeds for vehicles passing the RLC intersection and more abnormal driving behaviors, which increase the difficulty of stop-and-go decision-making. RLCs do not always lead to an increase of rear-end collisions. For vehicles close to or far from intersection at the decision-making time, RLCs will significantly reduce the possibility of rear-end collisions; however, for vehicles in the potential travel time of 2 s∼3 s, RLCs will increase the probability of rear-end collisions.

Funder

Public Technology Research Program of Zhejiang Province

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3