A Comprehensive Technoeconomic and Environmental Evaluation of a Hybrid Renewable Energy System for a Smart Farm in South Korea

Author:

Rabea Karim12ORCID,Michailos Stavros3,Udeh Godfrey T.1,Park Jiseon4,Lee YongWoon4,Kim Seongil4,Yang Won4,Hughes Kevin J.1,Ma Lin1,Pourkashanian Mohamed1

Affiliation:

1. Energy 2050, Department of Mechanical Engineering, The University of Sheffield, Sheffield S3 7RD, UK

2. Department of Mechanical Power Engineering, Faculty of Engineering, Tanta University, Tanta 31521, Egypt

3. School of Engineering, Faculty of Science and Engineering, University of Hull, Hull HU6 7RX, UK

4. Carbon Neutral Technology R&D Department, Korea Institute of Industrial Technology, Cheonan-si, Chungcheongnam-do 31056, Republic of Korea

Abstract

The farming sector like any other industry needs to be decarbonized. Hence, it is essential to meet the energy demands of the farms by adopting energy systems with a low-carbon footprint. Depending on the weather conditions, heating or cooling is needed. Within this context, this study presents a new hybrid renewable decentralized energy system that is designed to satisfy the requirements for heating, cooling, and electricity of a smart farm in South Korea. The under-investigation energy system comprises solar PV arrays, heat pumps, thermal energy storage tanks, and a wood pellet boiler. This study is the first to conduct an inclusive techno-enviroeconomic assessment of such a hybrid energy system by utilizing actual meteorological data on an hourly basis. This enables the model to be dynamic and facilitate accurate and reliable assessments. The modelling efforts have been performed in Aspen Plus and MATLAB to investigate the thermodynamic behaviour of the system. The investigation shows that the proposed system has achieved a daily average temperature of around 23.9°C inside the farm throughout the year with a standard deviation of 2.16°C. For the economic assessment, the levelized cost of energy has been selected as the main economic indicator, and this has been estimated at $0.218/kWh. It is found that the PV panels and the biomass boiler dominate the capital expenditures, and the biomass feedstock is the major contributor to the operating expenditures. Further, the proposed energy system reduces CO2 emissions, by up to 88.94%, when compared to conventional fossil-based energy systems. The outcomes of this study represent a holistic evaluation for such a low-carbon hybrid energy system when applied to greenhouses in Korea and in similar locations.

Funder

Korea Institute of Industrial Technology

Publisher

Hindawi Limited

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Market growth strategies for sustainable smart farm: A correlation and causal relationship approach;Developments in the Built Environment;2023-12

2. Integrating Solar Heaters with Building Energy Systems : A Simulation Study;International Journal of Scientific Research in Computer Science, Engineering and Information Technology;2023-10-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3