Actor–Critic-Algorithm-Based Accurate Spectrum Sensing and Transmission Framework and Energy Conservation in Energy-Constrained Wireless Sensor Network-Based Cognitive Radios

Author:

Shah Hurmat Ali1ORCID,Koo Insoo2ORCID,Kwak Kyung Sup1ORCID

Affiliation:

1. Department of Information and Communication Engineering, Inha University, Incheon, Republic of Korea

2. School of Electrical and Computer Engineering, University of Ulsan, Ulsan, Republic of Korea

Abstract

Spectrum sensing is of the utmost importance to the workings of a cognitive radio network (CRN). The spectrum has to be sensed to decide whether the cognitive radio (CR) user can transmit or not. Transmitting on unoccupied spectrum becomes a hard task if energy-constrained networks are considered. CRNs are ad hoc networks, and thus, they are energy-limited, but energy harvesting can ensure that enough energy is available for transmission, thus enabling the CRN to have a theoretically infinite lifetime. The residual energy, along with the sensing decision, determines the action in the current time slot. The transmission decision has to be grounded on the sensing outcome, and thus, a combined sensing–transmission framework for the CRN has to be considered. The sensing–transmission framework forms a Markov decision process (MDP), and solving the MDP problem exhaustively through conventional methods cannot be a plausible solution for ad hoc networks such as a CRN. In this paper, to solve the MDP problem, an actor–critic-algorithm-based solution for optimizing the action taken in a sensing–transmission framework is proposed. The proposed scheme solves an optimization problem on the basis of the actor–critic algorithm, and the action that brings the highest reward is selected. The optimal policy is determined by updating the optimization problem parameters. The reward is calculated by the critic component through interaction with the environment, and the value function for each state is updated, which then updates the policy function. Simulation results show that the proposed scheme closely follows the exhaustive search scheme and outperforms a myopic scheme in terms of average throughput achieved.

Funder

Ministry of Science, ICT and Future Planning

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3