Enhancement of Permeability Activated by Supercritical Fluid Flow through Granite

Author:

Nohara Tsuyoshi1ORCID,Uno Masaoki2ORCID,Tsuchiya Noriyoshi2

Affiliation:

1. Geoscientific Research Department, Tono Geoscience Center, Sector of Nuclear Fuel, Decommissioning and Waste Management Technology Development, Japan Atomic Energy Agency, Yamanouchi, 1-64, Akiyo-cho, Mizunami, Gifu 509-6132, Japan

2. Graduate School of Environmental Studies, Tohoku University, Aramaki-aza-Aoba, 6-6-20, Aoba-ku, Sendai 980-8579, Japan

Abstract

This geological study utilized electron probe microanalysis of granitic rocks to evaluate traces of hydrothermal fluid activity. Amphibole-plagioclase thermometry was applied to estimate the temperature of a glassy vein as approximately 700°C. The results of mesoscopic and microscopic observations of the rock core obtained through borehole investigations revealed that the track of supercritical fluid flow was microfracture filling with hornblende and plagioclase. Grain-boundary microfractures and parallel microfractures were recognized as traces formed by the limited activity of the supercritical fluid immediately after granite setting in the Late Cretaceous. The current high permeability of a borehole in and around the track of supercritical fluid flow was recognized to be related to the microfracture network. In order to investigate the enhancement of permeability activated by the supercritical fluid flow through granite, the results of this geological study and existing data from in situ permeability tests were analysed. Various fractures in and around the trace of a self-sealing zone were investigated for another borehole rock core. The trace of the self-sealing zone, which was composed of filling textures associated with the supercritical fluid, corresponded to the current low-permeability section of the borehole. Representative types were proposed for simple classification based on the characteristics of fractures and the permeability data of each test section. A high-angle fracture of chlorite filling in combination with an open fracture and the development of a sericite-filling fracture network including a low-angle open fracture were recognized as characteristics of high-permeability types. The results of this study indicate that the enhancement of permeability was activated by supercritical fluid flow through granite.

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3