Remote Synchronization Experiments for Quasi-Senith Satellite System Using Current Geostationary Satellites

Author:

Iwata Toshiaki1ORCID,Suzuyama Tomonari2,Imae Michito2,Hashibe Yuji3

Affiliation:

1. Collaborative Research Team for Verification, Kansai Collaborative Center, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan

2. Laboratory of Frequency Measurement Systems, National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Central 3, Tsukuba, Ibaraki 305-8563, Japan

3. Space Engineering Development Co. Ltd., 5-62-1 Nakano, eDC-building, Nakano-ku, Tokyo 164-0001, Japan

Abstract

The remote synchronization system for the onboard crystal oscillator (RESSOX) realizes accurate synchronization between an atomic clock at a ground station and the QZSS onboard crystal oscillator, reduces overall cost and satellite power consumption, as well as onboard weight and volume, and is expected to have a longer lifetime than a system with onboard atomic clocks. Since a QZSS does not yet exist, we have been conducting synchronization experiments using geostationary earth orbit satellites (JCSAT-1B or Intelsat-4) to confirm that RESSOX is an excellent system for timing synchronization. JCSAT-1B, the elevation angle of which is 46.5 degrees at our institute, is little affected by tropospheric delay, whereas Intelsat-4, the elevation angle of which is 7.9 degrees, is significantly affected. The experimental setup and the results of uplink experiments and feedback experiments using mainly Intelsat-4 are presented. The results show that synchronization within 10 ns is realized.

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences,General Engineering,Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3