An Unscented Kalman Filter-Based Method for Reconstructing Vehicle Trajectories at Signalized Intersections

Author:

Mu Jiantao1ORCID,Han Yin1,Zhang Cheng1ORCID,Yao Jiao1ORCID,Zhao Jing1ORCID

Affiliation:

1. Department of Traffic Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China

Abstract

On-board data of detected vehicles play a critical role in the management of urban road traffic operation and the estimation of traffic status. Unfortunately, due to limitations of technology and privacy issues, the sampling frequency of the detected vehicle data is low and the coverage is also limited. Continuous vehicle trajectories cannot be obtained. To overcome the above problems, this paper proposes an unscented Kalman filter (UKF)-based method to reconstruct the trajectories at signalized intersections using sparse probe data of vehicles. We first divide the intersection into multiple road sections and use a quadratic programming problem to estimate the travel time of each section. The weight of each initial possible trajectory is calculated separately, and the trajectory is updated using the unscented Kalman filter (UKF); then, the trajectory between two updates is also obtained accordingly. Finally, the method is applied to the actual scenario provided by the NGSIM data and compared with the real trajectory. The mean absolute error (MAE) is adopted to evaluate the accuracy of the proposed trajectory reconstruction. Sensitivity analysis is provided in order to provide the requirement of sampling frequency to obtain highly accurate reconstructed vehicle trajectories under this method. The results demonstrate the applicability of the technique to the signalized intersection. Therefore, the method enables us to obtain richer and more accurate trajectory data information, providing a strong prior basis for future urban road traffic management and scholars using trajectory data for various studies.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Critical Scenario Extraction and Identification Method for ICV Testing;2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC);2023-09-24

2. An Acceleration Denoising Method Based on an Adaptive Kalman Filter for Trajectory in Merging Zones;Journal of Advanced Transportation;2023-06-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3