Affiliation:
1. Department of Traffic Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
Abstract
On-board data of detected vehicles play a critical role in the management of urban road traffic operation and the estimation of traffic status. Unfortunately, due to limitations of technology and privacy issues, the sampling frequency of the detected vehicle data is low and the coverage is also limited. Continuous vehicle trajectories cannot be obtained. To overcome the above problems, this paper proposes an unscented Kalman filter (UKF)-based method to reconstruct the trajectories at signalized intersections using sparse probe data of vehicles. We first divide the intersection into multiple road sections and use a quadratic programming problem to estimate the travel time of each section. The weight of each initial possible trajectory is calculated separately, and the trajectory is updated using the unscented Kalman filter (UKF); then, the trajectory between two updates is also obtained accordingly. Finally, the method is applied to the actual scenario provided by the NGSIM data and compared with the real trajectory. The mean absolute error (MAE) is adopted to evaluate the accuracy of the proposed trajectory reconstruction. Sensitivity analysis is provided in order to provide the requirement of sampling frequency to obtain highly accurate reconstructed vehicle trajectories under this method. The results demonstrate the applicability of the technique to the signalized intersection. Therefore, the method enables us to obtain richer and more accurate trajectory data information, providing a strong prior basis for future urban road traffic management and scholars using trajectory data for various studies.
Funder
National Natural Science Foundation of China
Subject
Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献