The Impact of lncRNA on Diabetic Kidney Disease: Systematic Review and In Silico Analyses

Author:

Zhao Yunyun1ORCID,Yan Guanchi1ORCID,Mi Jia2ORCID,Wang Guoqiang2ORCID,Yu Miao2ORCID,Jin Di1ORCID,Tong Xiaolin3ORCID,Wang Xiuge2ORCID

Affiliation:

1. College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China

2. Endocrinology Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China

3. Northeast Asian Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China

Abstract

Background. Long noncoding RNA (lncRNA) is involved in the occurrence and development of diabetic kidney disease (DKD). It is necessary to identify the expression of lncRNA from DKD patients through systematic reviews, and then carry out silico analyses to recognize the dysregulated lncRNA and their associated pathways. Methods. The study searched Pubmed, Embase, Cochrane Library, WanFang, VIP, CNKI, and CBM to find lncRNA studies on DKD published before March 1, 2021. Systematic review of the literature on this topic was conducted to determine the expression of lncRNA in DKD and non-DKD controls. For the dysregulated lncRNA in DKD patients, silico analysis was performed, and lncRNA2Target v2.0 and starBase were used to search for potential target genes of lncRNA. The Encyclopedia of Genomics (KEGG) pathway enrichment analysis was performed to better identify dysregulated lncRNAs in DKD and determine the associated signal pathways. Results. According to the inclusion and exclusion criteria, 28 publications meeting the eligibility criteria were included in the systematic evaluation. A total of 3,394 patients were enrolled in this study, including 1,238 patients in DKD group, and 1,223 diabetic patients, and 933 healthy adults in control group. Compared with the control, there were eight lncRNA disorders in DKD patients (MALAT1, GAS5, MIAT, CASC2, NEAT1, NR_033515, ARAP1-AS2, and ARAP1-AS1). In addition, five lncRNAs (MALAT1, GAS5, MIAT, CASC2, and NEAT1) participated in disease-related signal pathways, indicating their role in DKD. Discussion. This study showed that there were eight lncRNAs in DKD that were persistently dysregulated, especially five lncRNAs which were closely related to the disease. Although systematic review included 28 studies that analyzed the expression of lncRNA in DKD-related tissues, the potential of these dysregulated lncRNAs as biomarkers or therapeutic targets for DKD remains to be further explored. Trial registration. PROSPERO (CRD42021248634).

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3