Efficient BFCN for Automatic Retinal Vessel Segmentation

Author:

Jiang Yun1,Wang Falin1ORCID,Gao Jing1,Liu Wenhuan1

Affiliation:

1. College of Computer Science and Engineering, Northwest Normal University, Lanzhou, Gansu, China

Abstract

Retinal vessel segmentation has high value for the research on the diagnosis of diabetic retinopathy, hypertension, and cardiovascular and cerebrovascular diseases. Most methods based on deep convolutional neural networks (DCNN) do not have large receptive fields or rich spatial information and cannot capture global context information of the larger areas. Therefore, it is difficult to identify the lesion area, and the segmentation efficiency is poor. This paper presents a butterfly fully convolutional neural network (BFCN). First, in view of the low contrast between blood vessels and the background in retinal blood vessel images, this paper uses automatic color enhancement (ACE) technology to increase the contrast between blood vessels and the background. Second, using the multiscale information extraction (MSIE) module in the backbone network can capture the global contextual information in a larger area to reduce the loss of feature information. At the same time, using the transfer layer (T_Layer) can not only alleviate gradient vanishing problem and repair the information loss in the downsampling process but also obtain rich spatial information. Finally, for the first time in the paper, the segmentation image is postprocessed, and the Laplacian sharpening method is used to improve the accuracy of vessel segmentation. The method mentioned in this paper has been verified by the DRIVE, STARE, and CHASE datasets, with the accuracy of 0.9627, 0.9735, and 0.9688, respectively.

Publisher

Hindawi Limited

Subject

Ophthalmology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3