Underwater Distortion Target Recognition Network (UDTRNet) via Enhanced Image Features

Author:

Cai Lei1ORCID,Chen Chuang2ORCID,Chai Haojie1

Affiliation:

1. School of Artificial Intelligence, Henan Institute of Science and Technology, Xinxiang 453003, China

2. School of Information Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China

Abstract

It is difficult for the autonomous underwater vehicle (AUV) to recognize targets similar to the environment in lacking data labels. Moreover, the complex underwater environment and the refraction of light cause the AUV to be unable to extract the complete significant features of the target. In response to the above problems, this paper proposes an underwater distortion target recognition network (UDTRNet) that can enhance image features. Firstly, this paper extracts the significant features of the image by minimizing the info noise contrastive estimation (InfoNCE) loss. Secondly, this paper constructs the dynamic correlation matrix to capture the spatial semantic relationship of the target and uses the matrix to extract spatial semantic features. Finally, this paper fuses the significant features and spatial semantic features of the target and trains the target recognition model through cross-entropy loss. The experimental results show that the mean average precision (mAP) of the algorithm in this paper increases by 1.52% in recognizing underwater blurred images.

Funder

National Key Research and Development Project

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference26 articles.

1. Attention-driven dynamic graph convolutional network for multi-label image recognition;J. Ye

2. Adversarial correlated autoencoder for unsupervised multi-view representation learning

3. Semi-supervised multi-view manifold discriminant intact space learning;L. Han;KSII Transactions on Internet and Information Systems,2018

4. Contrastive Representation Learning: A Framework and Review

5. A2C: Attention-Augmented Contrastive Learning for State Representation Extraction

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3