Affiliation:
1. PLA Strategic Support Force Information Engineering University, Zhengzhou 450001, China
2. National Key Laboratory of Science and Technology on Blind Signal Processing, Chengdu 610041, China
Abstract
Wideband signal detection is an important problem in wireless communication. With the rapid development of deep learning (DL) technology, some DL-based methods are applied to wireless communication and have shown great potential. In this paper, we present a novel neural network for detecting signals and classifying signal types in wideband spectrograms. Our network utilizes the key point estimation to locate the rough centerline of the signal region and recognize its class. Then, several regressions are carried out to obtain properties, including the local offset and the border offsets of a bounding box, which are further synthesized for a more fine location. Experimental results demonstrate that our method performs more accurate than other DL-based object detection methods previously employed for the same task. In addition, our method runs obviously faster than existing methods, and it abandons the candidate anchors, which make it more favorable for real-time applications.
Funder
National Key Laboratory of Science and Technology on Blind Signal Processing
Subject
General Engineering,General Mathematics
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献