MicroRNA-133b Inhibition Restores EGFR Expression and Accelerates Diabetes-Impaired Wound Healing

Author:

Zhong Haobo1,Qian Jin2,Xiao Zhihong3,Chen Yan4ORCID,He Xiangchun2,Sun Chunhan1ORCID,Zhao Zhiming5ORCID

Affiliation:

1. Department of Orthopaedics, Huizhou First Hospital, Huizhou 516000, China

2. Department of Internal Medicine, Suizhou Hospital, Hubei University of Medicine, Suizhou 441300, China

3. The Second Affiliated Hospital, Department of Spinal Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China

4. Department of Hand Surgery, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China

5. Department of Orthopedics, Suizhou Hospital, Hubei University of Medicine, Suizhou 441300, China

Abstract

Diabetic foot ulcers (DFUs) are caused by impairments in peripheral blood vessel angiogenesis and represent a great clinical challenge. Although various innovative techniques and drugs have been developed for treating DFUs, therapeutic outcomes remain unsatisfactory. Using the GEO database, we obtained transcriptomic microarray data for DFUs and control wounds and detected a significant downregulation of epidermal growth factor receptor (EGFR) in DFUs. We cultured human umbilical vein endothelial cells (HUVECs) and noted downregulated EGFR expression following high-glucose exposure in vitro. Further, we observed decreased HUVEC proliferation and migration and increased apoptosis after shRNA-mediated EGFR silencing in these cells. In mice, EGFR inhibition via focal EGFR-shRNA injection delayed wound healing. Target prediction analysis followed by dual-luciferase reporter assays indicated that microRNA-133b (miR-133b) is a putative upstream regulator of EGFR expression. Increased miR-133b expression was observed in both glucose-treated HUVECs and wounds from diabetes patients, but no such change was observed in controls. miR-133b suppression enhanced the proliferation and angiogenic potential of cultured HUVECs and also accelerated wound healing. Although angiogenesis is not the sole mechanism affected in DFU, these findings suggest that the miR-133b-induced downregulation of EGFR may contribute to delayed wound healing in diabetes. Hence, miR-133b inhibition may be a useful strategy for treating diabetic wounds.

Funder

Foundation of Huizhou Priority Clinical Speciality Cultivation Project

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3