Optimization of Mobile Edge Computing Offloading Model for Distributed Wireless Sensor Devices

Author:

Han Songyue12ORCID,Ma Dawei1,Kang Chao3ORCID,Huang Wei1,Lin Chaoying1,Tian Chunyuan1

Affiliation:

1. Communications Non-Commissioned Officer School, Army Engineering University of PLA, Chongqing 400035, China

2. 32705 Unit of PLA, Xi’an, Shaanxi 710086, China

3. Xi’an University of Posts & Telecommunications, Xi’an, Shaanxi 710061, China

Abstract

The development and popularization of mobile Internet and wireless communication technology have spawned a large number of computation-intensive and delay-intensive applications. Limited computing resources and existing technologies cannot meet the performance requirements of new applications. Mobile edge computing technology can use wireless communication technology to offload data to be stored and computing tasks to the nearby assistant or edge server with idle resources. Based on the data offloading of distributed wireless sensor device to device communication, the architecture is designed and the basic framework of distributed mobile edge computing is constructed. To solve the problem of high mobile cloud computing technology, the offloading model of optimized mobile edge computing was proposed, and the stability and convergence of the proposed algorithm were proved. Finally, the system performance of the proposed algorithm is verified by simulation. The results show that the proposed algorithm can converge within a finite number of steps. Compared with other benchmark schemes, the proposed algorithm has better performance in reducing system energy consumption, reducing moving edge response delay and system total delay.

Funder

Army Engineering University of PLA

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3