Estimation of Maximum Daily Fresh Snow Accumulation Using an Artificial Neural Network Model

Author:

Lee Gun1,Kim Dongkyun2ORCID,Kwon Hyun-Han3ORCID,Choi Eunsoo4

Affiliation:

1. Graduate Research Assistant, Department of Civil Engineering, Hongik University, Seoul, Republic of Korea

2. Associate Professor, Department of Civil Engineering, Hongik University, Seoul, Republic of Korea

3. Professor, Department of Civil Engineering, Chonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea

4. Professor, Department of Civil Engineering, Hongik University, Seoul, Republic of Korea

Abstract

For estimation of maximum daily fresh snow accumulation (MDFSA), a novel model based on an artificial neural network (ANN) was proposed. Daily precipitation, mean temperature, and minimum temperature were used as the input data for the ANN model. The ANN model was regularized and trained using a set of 19,923 data points, observed daily in South Korea between 1960 and 2016. Leave-one-out cross validation was performed to validate the model. When the input data were known at the gauged locations, the correlation coefficient between the observed MDFSA and the estimated one by the ANN model was 0.90. When the input data were spatially interpolated at ungauged locations using the ordinary kriging (OK) method, the correlation coefficient was 0.40. The difference in correlation coefficients between the two methods implies that, while the ANN model itself has good performance, a significant portion of the uncertainty of the estimated MDFSA at ungauged locations comes from high spatial variability of the input variables that cannot be captured by the network of in situ gauges. However, these correlation coefficients were significantly greater than the correlation coefficient obtained by spatially interpolating the MDFSA values with the OK method (R = 0.20). These findings suggest that our ANN model significantly reduces the uncertainty of the estimated MDFSA caused by its high spatial variability.

Funder

National Research Foundation of Korea

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3